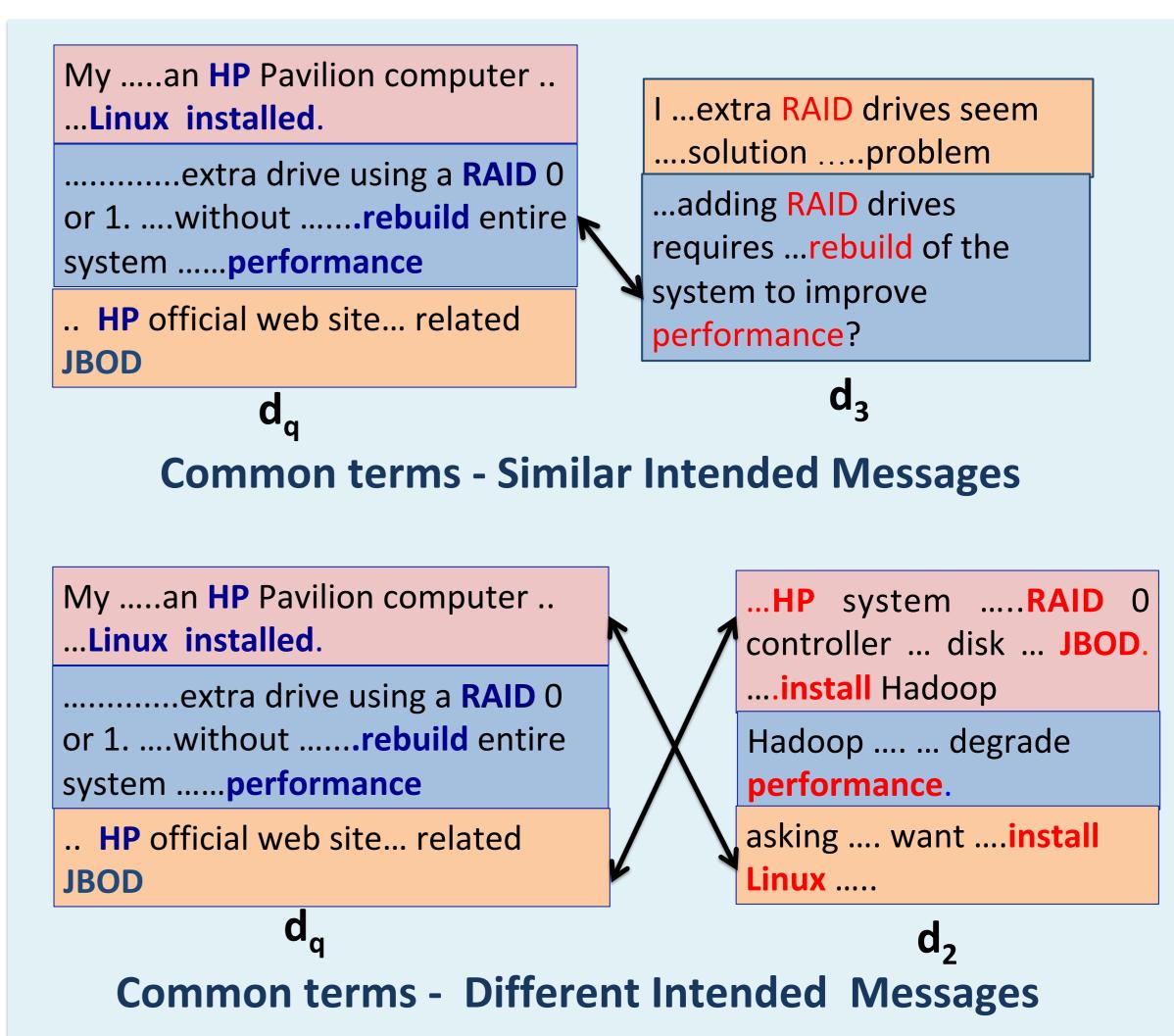

# Finding Related Forum Posts through Content Similarity over Intention-Based Segmentation - Extended Abstract


Dimitra Papadimitriou<sup>(\*)</sup>, Georgia Koutrika<sup>(\*\*)</sup>, Yannis Velegrakis<sup>(\*)</sup>, and John Mylopoulos<sup>(\*\*\*)</sup>

(\*) University of Trento

(\*\*) Athena Research Center

(\*\*\*) University of Ottawa





#### The goal for which a piece of text is intended

- may not be explicitly stated
- is reflected into the characteristics of the text

**Intention Definition.** Given a set F of n features of interest, an intention is identified by a feature vector, i.e., a vector of n values, one for every feature of F.

**INTENTIONS** 

Similarly to the idea of using terms to identify topics, features identify intentions.

Content similarity can more accurately determine relatedness, if focused on parts of the forum posts intended to serve a similar goal.

## ◆ SEGMENTATION OF POSTS **Feature Selection Border Selection** ◆ SEGMENT GROUPING **♦** MATCHING Single Intention Matching All Intentions Matching **INTENTION-BASED MATCHING**

#### Indicators of a change in the goal that the author has written the text for

- Terms, topics
- + Style, tense and other grammatical features

Grouping of features into Categorical variables (Communication Means)

CM<sub>tense</sub> (Tense) CM<sub>subj</sub> (Subject) CM<sub>qneg</sub> (Style) CM<sub>pasact</sub> (Status)

{I/we, you, it/they/(s)he} {interrog., negative, affirmative} {passive, active } CM<sub>pos</sub> (Part of Speech) {verb, noun, adj/adverb}

**FEATURE SELECTION** 

After

Segmentation

each segment

is intended

for a goal

{present, past, future}

**Intention-based Segmentation is** based on the distribution of features not the features per se.

#### For a Communication Means CM,

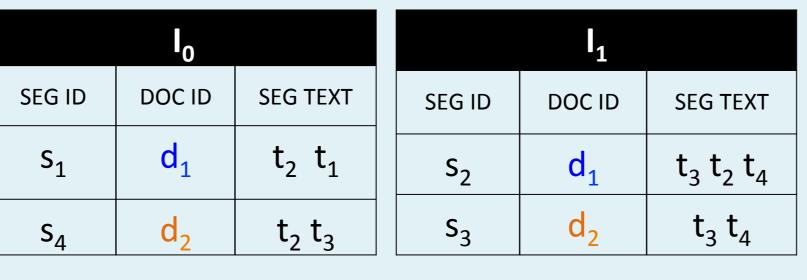
- **D[j]**: Number of Occurrences of j<sup>th</sup> value of CM<sub>r</sub> (where D is the Distribution Vector for CM<sub>r</sub>)
- All: Total number of occurrences of any value of CM<sub>r</sub>
- **D**: Number of value domain of CM<sub>r</sub>

$$div_{CM_r}(s_i) = -\sum_{j=1}^{|D|} \frac{D[j]}{All} * log(\frac{D[j]}{All}) coh(s_i) = \frac{1}{|CM|} \sum_{r=1}^{|CM|} 1.0 - div_{CM_r}(s_i)$$

$$depth(b_i) = \frac{|coh(s_i) - coh(s)| + |coh(s_{i+1}) - coh(s)|}{2 * coh(s)}$$

$$score(b_i) = (coh(s_i) + coh(s_{i+1}) + depth(b_i))/3$$

Coherence/Depth functions


#### **BORDER SELECTION**

#### **Clustering based on**

distribution of features

- within each segment
- within each document

Representaion for clustering Each value of each CM<sub>r is</sub> transformed into two features for the clustering model



 $t_1 \rightarrow s_1 s_4$ 

Term Indexing considering Intentions

Matching is performed within each intention cluster, then individual scores are combined to a single score for each document pair.

$$scr(d_q, d', I) = \sum_{\forall t \in s_q} f_{s_q}(t) * w(t, s') * \frac{log(|I| - |I^t|)}{|I^t|}$$

 $f_{s_q}(t)$ : frequency of the term t in the segment  $s_q$ 

|I|: cardinality of the intention cluster

 $|I^t|$ : the number of segments in the intention cluster I containing t

#### SEGMENT GROUPING/FORMING INTENTION CLUSTERS

### **AUTOMATIC SEGMENTATION VS USER ANNOTATIONS**

| OSEIT/IIIIO I/TITOIIS |                                  |              |  |
|-----------------------|----------------------------------|--------------|--|
|                       | HP Forums                        | Trip Advisor |  |
| Offset                | Fleiss's κ /Agreement Percentage |              |  |
| ±10 chars             | 0.20/64%                         | 0.35/71%     |  |
| ±25 chars             | 0.41/71%                         | 0.44/75%     |  |
| ±40 chars             | 0.68/77%                         | 0.71/83%     |  |

#### **GAIN IN AVERAGE PRECISION**

|               | _      |
|---------------|--------|
| HP Forum      | +10%   |
| Trip Advisor  | +12%   |
| StackOverFlow | +10.1% |

#### **REDUCTION OF LISTS WITH NO RELATED POSTS**

| HP Forum      | -24.5% |
|---------------|--------|
| StackOverFlow | -28.6% |

# **MATCHING**

- **REFERENCES** • D. Papadimitriou, G. Koutrika, Y. Velegrakis, and J. Mylopou- los, "Finding related forum posts through content similarity over intention-based segmentation," IEEE TKDE., vol. 29, no. 9, pp. 1860–1873, 2017.
- J. Jeon, W. B. Croft, and J. H. Lee, "Finding semantically similar questions based on their answers," ser. SIGIR '05. NY, USA: ACM, 2005, pp. 617–618.
- T. C. Zhou, C.-Y. Lin, I. King, M. R. Lyu, Y.-I. Song, and Y. Cao, "Learning to suggest
- questions in online forums." in AAAI, 2011. • I. Hulpus, C. Hayes, M. Karnstedt, and D. Greene, "Unsuper-vised graph-based
- topic labelling using dbpedia," in WSDM, 2013, pp. 465–474. • M. Hearst, "Texttiling: Segmenting text into multi-paragraph subtopic passages," Computat. Ling., vol. 23, pp. 33-64, '97.
- H. Misra, F. Yvon, J. M. Jose, and O. Cappe, "Text segmentation via topic modeling: an analytical study," in CIKM, 2009, pp. 1553–1556.

#### **EVALUATION ON REAL DATASETS**