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ABSTRACT
Information graphs are generic graphs that model dif-
ferent types of information through nodes and edges.
Knowledge graphs are the most common type of in-
formation graphs in which nodes represent entities and
edges represent relationships among them. In this pa-
per, we argue that exploitation of information graphs
can lead into novel query answering capabilities that go
beyond the existing capabilities of keyword search, and
focus on one of them, namely, exemplar queries. Ex-
emplar queries is a recently introduced paradigm that
treats a user query as an example from the desired re-
sult set. In this paper, we describe the foundations of
exemplar queries and the significant role of information
graphs, and we present several applications and relevant
research directions.

1. INTRODUCTION
The typical way of searching documents, objects

or structures is through queries [1, 4]. Structured
queries describe very accurately the objects of in-
terest but they are hard to formulate. For this
reason, several different search models have been
studied in the past, including keyword search, sim-
ilarity search, related search, personalized results,
query refinement and query relaxation. However,
these types of queries are vague and auxiliary in-
formation, such as knowledge bases, query logs or
user profiles, is needed in order to improve the qual-
ity of the retrieved results [25]. One type of such
auxiliary information is information graphs. In-
formation graphs are graph structures like social
graphs, knowledge bases, gene networks, etc. A
common form of information graph is a knowledge
graph in which nodes are entities, such as Google
and YouTube, and edges are relationships between
these entities, e.g., Google acquired YouTube.

A recently introduced query paradigm is exem-
plar queries [19]. Exemplar queries are particularly
useful to cases in which the user knows one sin-
gle element among those that are expected to be

in the desired result set, and the system needs to
infer the rest of the elements from it. For instance,
a traditional keyword query on the World War II
will traditionally return documents related to this
war. Evaluating the query as an exemplar query
will return many other big wars in history, such as
the Vietnam War or the American Civil War. In
other words, the user “query” is just an example
of the elements and inter-relationships of interest
that are expected to be returned by the search en-
gine. Exemplar queries are particularly suitable for
the case of an investigator, a lawyer, a reporter, a
student, or a citizen that needs to perform a study
on a topic to which she may not be familiar with,
yet has as a starting point an element from the de-
sired result set. Initial studies show that more than
80% of the users would benefit from a service imple-
menting this paradigm [19]. As we discuss below,
the exemplar query paradigm is flexible enough to
be applied to many different data sources as long
as there exists an effective method to convert them
into information graphs.

Exemplar query answering is a multi-step task
that evaluates an exemplar query and returns the
set of results that are considered similar to those
the user provided. The first challenge is that a user
may not be able, or willing to provide all the details
of the example, thus we need first to identify a sub-
graph of the information graph that better matches
the user input. To do so one can exploit informa-
tion graphs by identifying subgraphs that satisfy
the user provided conditions. These subgraphs are
referred to as user samples. Once the user sam-
ples have been retrieved, similar structures need to
be found by employing graph similarity techniques.
In order to provide different aspects of the results
found in the previous step, the structures are re-
fined by adding nodes and edges that belong to the
information graph and are connected to those re-
sults. Finally, the results are ranked to present first
those that more likely match the user’s interests. If
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Figure 1: Exemplar query answering.

the number of these results is large then only the
top-k can be produced and shown. These steps are
graphically depicted in Figure 1 and have been im-
plemented in the XQ system [20].

In the following, we provide a detailed description
of how information graphs are used in these steps,
and present a number of other applications scenar-
ios in which informations graphs can be used.

2. EXEMPLAR QUERY ANSWERING
We define an information graph as a graph with

labels on the edges and names as identifiers on the
nodes. More specifically, an information graph is a
pair G : 〈N,E〉, where N is the set of nodes and E
is the set of edges. Each edge has a label l from the
set L of infinite label names.

In exemplar queries, the information provided by
the user is considered as a member of the desired an-
swer set. Evaluating an exemplar query means dis-
covering what are the main characteristics of that
example and finding other similar structures in the
information graph. Given a function eval(Qe) that
evaluates the query Qe on the information graph G
and returns a set of samples, we define the evalua-
tion of an exemplar query as follows.

Definition 1. The evaluation of an exemplar query
Qe on an information graph G : 〈N,E〉, is the set
{a | ∃s∈eval(Qe) ∧ a≈s}, where a and s are struc-
tures in G and the symbol ≈ indicates a similarity
function.

2.1 Finding Samples
A natural way of searching is keyword search.

However, keyword queries are ambiguous in nature
and as a result, many methods have been proposed
to evaluate keyword queries into subgraphs of an
information graph. Examples of such methods are
semantic expansions [6, 23] and keyword to graph
query translation [13,25].

Evaluating a keyword query into a graph query
requires several steps. The first is to split the query
into chunks of one or more words. External infor-

mation, such as document corpora, are usually ex-
ploited to mine the frequency of co-occurring words.
The chunks are then assigned to candidate nodes in
the graph by exploiting simple matching techniques
on the node labels alongside some thesaurus. The
next step connects the candidate nodes to form sub-
graphs. Since several subgraphs are found, proba-
bilistic ranking (e.g., using random walks) is per-
formed to retrieve the most likely user samples.

Relationships between concepts are often explic-
itly expressed in the user query. Some existing
approaches explicitly elaborate on this fact either
through similarities [2], or by employing mathemat-
ical models [3]. We explicitly take them into ac-
count to improve the quality of the sample retrieved
from the information graph [14].

2.2 Finding Similar Structures
Traditional query answering on graphs [15, 27] is

not directly applicable to exemplar queries, as it fo-
cuses on finding the best subset of nodes matching
a given graph-query. Instead, in exemplar queries,
structures similar to the user sample need to be re-
trieved in the information graph. We refer to these
similar structures as solutions. Although any simi-
larity measure can be used, a natural one is based
on graph node-and-edge isomorphism [19]. While
previous works are node-label preserving, i.e., they
match both nodes and labels in the sample with
those in the graph, exemplar query similarity pre-
serves only the edge-labels and their structure.

Figure 2 illustrates a knowledge base and the
sample: “Google founded in Menlo Park acquired
YouTube” denoted as S in the figure. Exploiting
the graph isomorphism similarity with the sample
S, one can retrieve as solutions both A1:“Yahoo!
founded in S. Clara acquired del.icio.us”, and A2:
“GM founded in Flint acquired Opel”.

In the following, we briefly describe three algo-
rithms for the identification of such structures. The
first is an exhaustive algorithm that seeks in the
graph the structures isomorphic to the user sample.
The second is a fast pruning technique to restrict
in advance the search space. Finally, the third al-
gorithm is an approximate solution based on the
Personalized PageRank measure. These techniques
enable real-time exemplar query answering (i.e., re-
sponses in less than 1s), even when using the entire
Freebase knowledge graph [19]).

Exhaustive solution. We assume as input a con-
nected graph S : 〈NS , ES〉 that represents a sample.
The notion of isomorphism is exploited to imple-
ment the similarity function ≈ in Definition 1, i.e.,
to find every subgraph G′:〈NG′ , EG′〉 of G that is
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Figure 2: Answers to an exemplar query on
a knowledge base

isomorphic to S. The set of all such subgraphs are
the solutions. To do this, the sample S is compared
with every other subgraph in the database. If an
isomorphic graph is found, then it is added to the
set of solutions. The algorithm initially starts from
a node of the sample and finds a matching node
in the information graph. It iteratively visits the
nodes in the sample and in the graph until either all
the nodes have been visited and a subgraph match-
ing the sample has been found, or it is not possible
to retrieve an isomorphic mapping. This algorithm
is exponential in the number of query nodes.

Fast Exact Solution. Since the exhaustive solu-
tion is not efficient for large graphs, a better method
for exploring the solution space is needed. The pro-
posed method employs an efficient technique for
comparing nodes, and an algorithm for effectively
rejecting node pairs that do not participate in any
isomorphic mapping. The idea is to store a compact
representation of the neighborhood of each node.
This representation is called d-neighborhood and re-
ferred to as Nd(n), i.e., nodes and edges that are at
a fixed distance d from each node.

For every node in the database we compute a
table consisting of the number of nodes that are
reachable from that node at some specific distance
and with a path ending with an edge labeled `. In
other words, for a node n, for every label ` and for
every distance i we keep the cardinality of the set
Wn,`,i = {n1|n1

`→ n2 ∨ n1
`← n2, n2 ∈ Ni−1(n)}.

This compact representation is then exploited in
the algorithm through the concept of simulation. A
graph simulates another graph if there exists a way
to map each transition on the first graph with a
transition in the second. Consequently, if a graph
cannot simulate another graph, then they cannot
be isomorphic. The main idea of our approach is
to perform multiple simulations with the user sam-
ple on the database graph, comparing only the d-
neighborhood representation of the nodes, without
having to actually visit their neighborhood. The

result is a method that operates much faster than
the exhaustive solution, while providing the same,
exact answers. While the algorithm is still expo-
nential at worse, it is practically much faster than
the exhaustive solution. The d-neighborhood can
be computed and stored in advance in O(d|N ||L|)
space, where L ⊂ L is the finite set of edge-labels in
G. Provided that the d-neighbor is sparse, efficient
indexing techniques can be employed [15].

Approximate Solution. In order to further re-
strict the search space to a meaningful set of nodes
that are likely to contain the top-k solutions for
the user, a principled approach based on the Per-
sonalized PageRank (PPV) algorithm is considered.
Since user preferences are expressed through the ex-
emplar query, the PPV has to be computed over
nodes in the information graph, instead of web-
pages. Instead of treating each edge equally, as
in the original PageRank, and in order to better
capture the semantics of the edge labels we pro-
pose the Adaptive Personalized PageRank Vector
(APPV) method. APPV v is defined as the sta-
tionary distribution of the Markov chain with state
transition given by v = (1− c)Av + cp, where A is
a non uniformly distributed adjacency matrix and
p is a preference vector computed from the user
query. To compute this value fast, we apply an
approach similar to the weighted particle filtering
procedure [16], extended to take into account non-
uniform edge weights. Finally, the algorithm re-
turns the subset of G containing only those nodes
with APPV score higher than a threshold. Isomor-
phic structures are then found in this subset.

2.3 Graph Query Refinement
If the user provides a general exemplar query

with an exploratory intent, then query refinement
is needed. Moreover, since a vague query usually
retrieves a large number of solutions, query refine-
ment can be used to group them offering a small
set of more specific aspects that capture the struc-
tures contained in most of the solutions. These two
common situations are the main motivations for the
study of query refinements in information graphs.
Query refinement has been studied in the web [7]
and relational databases [21], but no straightfor-
ward adaptation exists with graph data sources.

A refined query is a more restrictive query than
the original one, which retrieves a subset of the re-
sults of the original query. Therefore, finding re-
finements to a graph query means retrieving a set
of supergraphs of the original query. Given a query
Q we say that Q′ is a reformulated query if (i) it is
a connected graph, and (ii) there exists a subgraph
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isomorphism from Q to Q′. Given a set of graphs
D = {G1, ..., Gn}1 and a query Q : 〈NQ, EQ〉 the
results of the evaluation of Q over the set D, is the
set RQ of subgraphs isomorphic to Q.

Given that the number of reformulations is ex-
ponentially large, only a meaningful subset should
be returned. In order to retrieve relevant reformu-
lations, the objective function sums two different
contributions: the number of RQ captured by the
candidate reformulations (coverage), and the num-
ber of diverse results in each result set of the refor-
mulated queries (diversification).

The coverage is a function cov that takes as input
a set of reformulated queries R, and computes the
number of results captured by R, that is, cov(R) =
|⋃Q∈RRQ|. The diversification is represented by
a function div that takes into account the number
of elements that are in the result set of Q1 and
not in Q2, namely div(Q1, Q2) = |RQ1 ∪ RQ2 | −
|RQ1∩RQ2 |. The final score of a set of reformulated
queries is the linear combination of coverage and
diversity

f(R) = cov(R) + λ
∑

Q1,Q2∈R

div(Q1, Q2)

where λ ∈ [0, 1] is a parameter that regulates the
diversification of the result set R. The set R that
maximizes the two factors of f(R) is selected.

Fast Exact Solution. The optimization problem
can be reduced to an instance of Max-Sum Diver-
sification, known to be NP-hard. For this prob-
lem, there exists a 1

2 -approximation greedy algo-
rithm [8] that runs linearly with respect to the input
size. The greedy algorithm selects at each step the
query that maximizes the marginal potential gain,
i.e., the difference between the value of the function
f , adding one extra element and the current value of
f . Although the greedy algorithm works well in the
normal set-covering formulation, in which the sets
of elements are known in advance, the generation of
the reformulations requires an exponential number
of operations, as we consider all the possible edges
that can be added to the current query Q.

Therefore, an algorithm that allows fast and ef-
fective pruning of the search space is necessary. The
algorithm should remove the query refinements that
definitely do not participate in the optimal solu-
tion. Since any reformulated query generates other
reformulations just by adding one extra edge, the
algorithm should find, for each reformulated query
already computed, an upper bound to the marginal
potential gain. This algorithm will then preserve

1A set of graphs is obtained considering a neighborhood of
the solutions found in the previous step.

the correctness of the approximation, yet allowing
for an effective pruning of the unpromising reformu-
lations. A further optimization can be introduced
expanding at each step the reformulated query with
the maximum upper bound.

2.4 Ranking Exemplar Results
In order to rank the exemplar query results, the

structural similarity as well as the closeness of the
solution from the sample are taken into account.
For the former, a metric that is based on a vectorial
representation of nodes using its neighborhood is
used [15], and extended to capture the differences
among nodes that emerge when taking into account
the edge-labels of the neighbors, denoted with S.
For the latter, the APPV values are used, as they
provide information about the distance of any node
from the nodes of the sample, and consequently the
distance of each solution from the sample. The final
score is the linear combination

ρ(ns, n) = λS(ns, n) + (1− λ)v[n], (1)

where ns is a node in the sample, n a node in the re-
sult, v[n] is the APPV score and λ is a user-defined
parameter that regulates the amount of diversifica-
tion in the results. For instance, in Figure 2 the
ranking function will rank A1 higher, because it is
closer to the sample S than A2.

3. APPLICATIONS
Exemplar queries find various applications in sev-

eral different contexts. Below we discuss four such
applications, namely, related queries, document search,
seed-based search, and recommender systems.

3.1 Related Queries
Keyword queries are typically vague in their se-

mantics, and a lot of work has been devoted in
proposing alternative queries that generate results,
which are more likely to match the user interests.
Query refinement [18] and query relaxation [21] are
two techniques that make a user query more spe-
cific, or more generic, respectively, in order to bet-
ter match the user expectations. A similar concept
is the concept of related queries [1]. The idea is to
offer to the user a number of alternative queries that
retrieve concepts that are related to those that the
user asked about, or concepts that the user may be
interested in finding more information about. Iden-
tifying related queries is a challenging task. Vari-
ous methods, such as the exploitation of user query
logs [1], large document corpuses [4] and knowledge
bases [23] have been proposed. Exemplar queries
can be seen as a complementary methodology that
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suggests alternative queries. Having identified the
user samples in a knowledge graph (e.g., Freebase)
from the keyword query that the user provided,
finding the related structures is like finding related
concepts, from which queries can be formulated and
then presented to the user as related queries [19].

3.2 Document Search
Document search is the core task of web search

engines, as well as that of many document databases.
Given a keyword query, the search engine retrieves
the documents that are related to these keywords,
which typically means that the documents have these
keywords in their content. Current solutions are
based on a plethora of different technologies, like
topic-models [5] and click-models [10], and exploit
various data sources, such as query-logs and knowl-
edge bases. Exemplar queries can offer new ways
to enrich this type of query results. Evaluating the
keyword query through a traditional evaluation pro-
cess, and at the same time through the exemplar
query evaluation process described previously, will
lead to a much richer answer set. This answer set
will contain documents that may not include the
original query keywords, but will involve concepts
that are similar to those expressed in the original
query. Entity linking [11, 22] can translate a docu-
ment into a graph sample to be used in a knowledge
graph as an exemplar query. This type of search has
often been coined as semantic search, since the user
is looking for semantically related documents, even
if their direct structural relationship is not explicit.
Furthermore, what is critical in this type of search
is to be able to identify user intentions through the
actions (e.g., previous searches) that a user has per-
formed. This can be achieved by exploiting a graph
representing previous knowledge on sequences of ac-
tions leading to the achievement of some goal [24].

3.3 Seed-based Search
Documents in document collections may be asso-

ciated (related) in ways not always expressed through
syntactic and semantic content similarity. Looking
for this kind of similarity is encountered in many
practical scenarios. For instance, in the case of
technical blogs, in which users describe solutions
to various problems that have faced, a user may be
interested in finding a solution to a technical prob-
lem and uses a keyword search to identify responses
from users that have faced different (but of similar
nature) problems. Keyword based similarity will
not work in most of such cases. Exemplar queries
can help by considering a specific solution as an
example and then searching of similar cases. To

find such similarities, entity identification [11] can
be used to turn the unstructured text document into
a structured graph, and this structured query graph
can then be matched against a knowledge graph.

Instead of seeing a document as a set of intercon-
nected entities, one can see it as a set of segments,
each one used to serve a specific communication
message. A segment may be divided further into
sub-segments that serve more specific purposes. At
the end, the document, fragmented into segments
and subsegments has been turned into a tree where
the nodes represent the segments. Given a sample
document, finding similar documents may turn to
be a task of finding documents with the same seg-
ment structure or type of segment structure, even
if the content of the segments are very different.

3.4 Recommender Systems
Recommender systems try to make item sugges-

tions from an item set, or rank the results of a user
query, based on the personal preferences of the user
(according to her previous selections in the interac-
tion with the system). This kind of decisions are
based on some form of similarity to the properties
of the items in the previous selections, as this is
computed using a number of different metrics [26].
One can formulate the set of all the different proper-
ties of the items and organize them into some graph
structure that represents their one-to-one relation-
ships either based on their nature, or on the degree
of preference by the various users. Then given some
selection made by the user, additional suggestions
of similar items can be made, through an exemplar
query evaluation method that uses the item features
graph as an information graph.

4. EXTENSIONS
The exemplar query answering framework pre-

sented previously can be extended in several direc-
tions, in order to offer more advanced services.

Multiple exemplar queries. The user may pro-
vide multiple examples of the same desired result
set and this information can be used to more ac-
curately identify the user needs. Although multi-
ple query processing has been studied in relational
databases [9], the exemplar queries context is com-
pletely different: in this earlier work, the results for
a single, or multiple queries do not change, while in
exemplar queries the results become more specific as
the number of example queries increases. Moreover,
the straightforward solution that computes the in-
tersection between the result sets is not directly ap-
plicable when there is no common edge labels in the
input samples. A recent study computes the rele-
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vant neighborhood of the samples in order to find
intersections among them [12]. However, this does
not provide a clear semantics for multiple exemplar
queries, thus the problem needs to be investigated
further.

Approximate exemplar queries. Assume that
a user looking for companies in California provides
the query “Google, S. Mateo”. The identified sam-
ple connects Google to S. Mateo using the edges
foundedIn, in as in Figure 2. The query, through
graph isomorphism, retrieves companies founded in
the bay area, that does not perfectly match the
user intent. Approximate query answering could
solve the problem, retrieving companies not only
founded in California but also based in California,
employing some similarity between edges. There-
fore, extending the similarity measure to handle
looser matchings is important. Several adaptations
of the current task can be employed, such as ap-
proximate queries [17] and bi-simulation instead of
graph isomorphism. Due to the large number of re-
sults, graph indexing techniques have to be adopted
in order for the system to provide timely answers.

Personalization and dynamic ranking. The
ranking function presented earlier does not take into
account user preferences. User preferences can be
mined from query logs, or other sources, and offer
the basis for personalized results ranking. The Per-
sonalized PageRank (Section 2.2) can be extended
to include any probability in edges and nodes, thus
reflecting the preferences of the user. Moreover,
without employing any approximation, the compu-
tation of the node similarity based on the neighbor-
hood can take into account various preferences.

5. CONCLUSIONS
Information graphs are valuable and important

source of information, as they embed knowledge in
a simple graph structure. The use of information
graphs to answer exemplar queries opens interest-
ing research directions that cannot be addressed by
existing technologies. This synergy between exem-
plar queries and information graphs forms the basis
of the presented exemplar query answering frame-
work. We argue that this framework is powerful
and versatile, able to improve existing solutions by
enriching the expressiveness and the ease of use of
many search systems, and to increase user satisfac-
tion. Finally, we discuss how this framework can
be applied to several different scenarios, such as re-
lated queries, document and seed-based search that
constitute the basis of modern search engines.
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