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ABSTRACT
Recommender systems are used to identify those items in a large
collection that are more likely to be of interest to a user. A com-
mon principle of most recommenders is that whatever happened
in the past is a good indicator of the future. We offer a different
perspective. Considering the fact that in real life users do their
selections with certain goals in mind, we recommend items (or
actions) that help users fulfilling their intended goals using their
past only as a way of identifying goals of interest. We introduce
a model that connects goals and actions through action sets im-
plementing the respective goals. Such a model captures latent
associations among goals and actions and allows the ranking of
actions considering different user strategies such as to complete at
least one goal with the minimum effort (i.e., minimum number of
actions), or to open up more paths for fulfillment of more goals
in the future. For each strategy we recommend an algorithm that
exploits the user action and goal spaces to rank the actions in a
different way. We have performed extensive experimental studies
to understand how these techniques are related and compare the
results against traditional recommendation methods. The experi-
ments illustrate that it is not possible to replicate the results of our
approach using existing techniques.

1 INTRODUCTION
People are daily facing situations in which they have to make
choices from large collections of items. Selecting the best answer
to a search engine query among those satisfying the query condi-
tions, selecting a movie to watch, an item to purchase, or friend
activities to read about in social media, are only some of the most
characteristic examples. Recommender systems [3, 7, 12, 16, 20]
give advice to users on items that are likely of interest to them.
There are two main categories of recommender systems. The
first is the collaborative filtering, which is based on the idea that
similar users have similar preferences, thus, the analysis of the
choices of similar users can result in successful recommendations
of items that have not been selected yet. The second category is
the content-based which is based on the idea that users would like
items that have similar features with items they have liked in the
past. The principle behind both approaches is that whatever the
past indicated as preference, it is likely to be preferred also in the
future.

In this work, we approach the problem based on a different
principle. There have been studies in psychology and social sci-
ences [4] that have shown that human actions are not random and
unrelated events. They may be of course affected by preferences
but they are mainly results of rational selections performed with
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the purpose of achieving some specific goal that a person has set
and aims to fulfill [1].

Based on these studies, we advocate that by recognizing the
goals for which actions of the past have been performed, it is
possible to identify the driving forces of the users’ future actions
and make recommendations that better fit these needs. Since the
fulfillment of a specific goal may require actions that are highly
different in nature, this form of recommendation may recommend
actions that are highly different from those of the past, or from
those that similar users have done in the past. Note that we may
use the term “actions” and not “items” as typically done in rec-
ommender systems; with this option we are being more generic
since the selection of an item, the purchase of a product, or the
watching of a movie are practically all actions.

Existing studies in recommender systems have already recog-
nized that methods taking into account similarity with what has
happened in the past are not always matching user expectations
and have tried different techniques that focus on other aspects
such as serendipity, novelty and diversity to improve the quality of
recommendations [9]. However, these solutions are not principled
and are not driven by some specific, user-selected, well-defined
target while in many recommendation scenarios there exist targets
that users are willing to reach. For instance, in online learning
platforms, users may target at specializations or/and degrees. In
employment-oriented social networking services such as LinkedIn
users are encouraged to take actions that will lead them into their
next position. In addition, they can see how some actions can
lead to the same target following different career paths. Moreover,
users may perform actions that will lead them to the fulfillment
of commercial goals such as to get discount coupons, or everyday
goals such as to become fit or to cook.

Consider, for instance, the case of a customer in a supermar-
ket that has placed in the cart a kilo of potatoes and carrots. A
content-based recommendation will try to propose products that
are close to what is already in the cart, i.e., similar to potatoes
and carrots which means it may propose other kinds of vegetables,
or even suggest other types of potatoes. On the other hand, a col-
laborative filtering system may suggest light beer or red peppers,
because these items have been bought in the past by customers
with similar preferences. Both methods, through clearly different
routes, recommend items based on the customer’s past. Instead,
by taking into account that the items in the customer’s cart can be
combined with other items to produce one or more food recipes,
the system can open up new options to the customer. For instance,
considering a recipe to make an olivier (russian) salad that in-
cludes: potatoes, carrots and pickles, an item to be recommended
would be pickles. Another useful ingredient would be nutmeg that
is a spice used for mashed potatoes and pan-fried carrots, two
recipes that require products some of which are already in the
customer’s cart. Such a recipe-based recommendation of products
may not be justified by similarity to products already in the cart,
neither by other product combinations found frequently in the



carts of other customers. This means that neither association rules
nor techniques that detect correlations among items can be em-
ployed to make such recommendations since they highly depend
on the popularity of these item sets. So, unless we consider the
product combinations found in the recipes, these products will
not be recommended by other techniques. Furthermore, given the
recipes, the recommendations can be optimized for an overall
benefit. For example, recommended products may give the ability
to the customers to maximize the number of recipes that they can
materialize.

Considering goals in the recommendation problem is challeng-
ing. The challenge comes from the fact that, in real life, there
are typically multiple goals that one needs to fulfill at any given
time. Each of these goals may require fewer or more actions in
order to be fulfilled, and there may exist alternative ways for the
fulfillment of a specific goal. Users have to reason on the priorities
between the goals they try to achieve and the benefit they will
have by the execution of each action towards the fulfillment of
these goals. For instance, some users may prefer actions that help
them fulfill a goal as soon as possible, while others may prefer
actions that help the advancement of as many goals as possible. A
goal-oriented recommender will have to leverage the goals by first
recognizing the intended user goals, decide the priorities among
them, and quantify the benefit of each action in relationship to the
intended goals and in conjunction with the other possible actions.

We introduce a new family of recommendation strategies, i.e.,
goal-based recommendations, that deal with the above challenges.
The goal-based strategies identify the goals for which exists evi-
dence that the user is aiming at achieving. The evidence originates
from the previous user activity, i.e., the actions that the user has
already performed. Given this goal space, the strategies explore
the sets of actions that lead to the fulfillment of these goals and
contain actions that the user has already performed to find actions
which the user has not performed and may be willing to complete.
The sets of actions together with the goals they fulfill constitute
the user’s goal implementation space. The likelihood that the users
will like an action from the candidate set of actions in this space
depends on their approach towards the goals they would like to
fulfill. We have identified three different strategies for exploring
and exploiting the user’s spaces in order to select the actions to be
recommended. The three strategies correspond to three different
policies based on which users often make their selections.

The first strategy is the Focus that examines each of the action
sets in the user’s goal implementation set to find which of them
lead to the fulfillment of the goal that is closest to completion,
either because most of the required actions have been already
performed (Focuscmp ), or because they require only a few more
actions (Focuscl ). Then, it forms the recommendation lists from
the actions in these action sets. It is the policy preferred by users
that need to fulfill at least one goal through the actions in the
current recommendation list. The second strategy, Breadth, is not
examining each action set in the user’s goal implementation space
separately. It considers more than one set of actions at the same
time. Specifically, it evaluates and ranks the actions in the user’s
action space based on all the sets this action participates and se-
lects those actions that belong in as many sets as possible together
with as many as possible actions from the user activity. This strat-
egy is for users that would like to fulfill as many goals as possible,
if possible, through this recommendation list, but in order to max-
imize the number of fulfilled goals, they are willing to complete
some or all of them in the future, i.e., not only through the actions
in the current recommendation list. This way it keeps some “paths”

open for the future (i.e., unfulfilled goals) but those paths contain
the minimum number of additional actions. We also suggest a third
strategy, the Best Match, that similarly to Breadth is not trying to
fulfill at least one goal through the current recommendation list.
It recommends actions that contribute to the goals of the user’s
goal space. However, in contrast to Breadth, Best Match evaluates
an action considering the whole goal space, not only the goals to
which this specific action contributes. It generates a profile for the
user and estimates a similarity between this profile and the actions
to be recommended. The action representation shows how much
that action contributes to the fulfillment of the various goals and
the user profile how many of the user actions contribute to the
various goals. It is a policy that may end up in the fulfillment of
many goals in the future. However, it is a strategy for users that
are interested in actions that are more useful (contribute more) to
the goals to which the user has has put more effort in the past (and
respectively less to goals to which the user has put less effort).
Our contributions can be summarized as follows:

• We introduce and formally define the notion of goal-oriented
recommendation, which evaluates every action considering
the goals which the current user may be willing to fulfill
and how that action contributes to the fulfillment of one or
more of these goals together with other actions of the user
(Section 3).
• We explain how it differs from existing techniques and why

the latter cannot be used to offer this type of recommenda-
tion (Section 2).
• We present different strategies for ranking the candidate

actions, with each strategy implementing a different policy
in prioritizing the goals and selecting the actions to be
recommended (Section 5).
• We describe efficient ways of implementing the above

strategies and materializing the goal oriented recommenda-
tion paradigm (Section 4).
• We study the effectiveness of our methods and compare

them to the state-of-the-art recommendation approaches.
We show that goal-based approaches can recommend ac-
tions that bring the user closer to the fulfillment of goals
that are related to her/him, are highly different from each
other and at the same time from actions performed by other
users in the past (Section 6).

2 RELATED WORK

Goal modeling. Goal modeling has attracted a lot of research
interest for decades. However, the focus of the different fields has
been in goal and next action inference [13] such as prediction of
the next action in a sequence, e.g., the next web page to click or
the next location to be [11, 18]. The purpose of such systems is for
instance to promote the inferred actions or act in anticipation of
the user’s actions [2]. To infer the next action(s) they employ mod-
els such as probabilistic (state transition) models, e.g., Bayesian
Networks [15], or Markov models [18] or other variations [2].

Recommender Systems. Our method retrieves actions to be rec-
ommended but does not consider neither the user’s neighborhood
activity nor the activity of the current user as in state-of-the-art rec-
ommendation approaches but the actions in the implementations
of the various goals. In contrast to Collaborative Filtering [7, 8]
that exploits previous item selections or interactions that similar
users have performed, it selects implementations that contain sub-
sets of the user activity and can be adequately extended to lead to



the fulfillment of one or more goals. It also differs from Content-
based Filtering [3] that recommends items similar to what the
user has used in the past with a high degree of satisfaction.

Association rule mining. Association rule mining analyzes the
user’s histories to identify groups of items appearing together and
use this as the basis for making recommendation [19]. The ap-
proach is based on popularity, while our technique is not affected
by popularity fluctuations. Furthermore, different actions may of-
ten appear together but for different goals, which means not only
that recommendations different than ours will be made, but these
recommendations will also be incomplete, i.e., they will manage
to fulfill none of the goals, since the system is confused and un-
able to distinguish the different intended goals of the actions that
appear together.

3 GOAL-BASED RECOMMENDATIONS

Actions, Goals and Goal Implementations. We assume the ex-
istence of a set U of users. Users perform actions such as the
purchase of an item, the visit of a web page, the watching of a
movie, or any other recordable task. We consider the existence of
a set A of actions.

People set the goals that they need to achieve and then they
decide to perform those actions that they believe will help them
fulfill their goals. We denote G the set of goals. A set of actions
constitutes an activity, which means that there are 2A different
possible activities. The activities that are intended for a goal д ∈ G,
alongside the respective goal, are referred to as goal implementa-
tions.

Definition 3.1. A goal implementation, or simply implementa-
tion, is a pair ⟨д,A⟩ with A∈2A and д∈G.

Goal Implementation Data sources. Goal implementations can
be found in sources related to almost every aspect of human
activity. Recipes, for instance, are implementations of specific
goals (the food that the recipe is about). Online learning platforms
have specializations and degree that are implemented through
courses. Each specialization is associated with one or more set
of courses indicating the actions required to achieve the goal,
i.e., the specialization. Goals can also be found in online stores.
Many online clothing stores, for instance, give users the ability
to form outfits and annotate them with labels such as ‘for friend
meetings”, “to be warm” and so forth. Those outfits constitute
implementations of the goal, with the goal being the label. With
this knowledge, when the system recommends some item to a user
apart from considering the user preferences on characteristics such
as color or material (content based filtering) or considering what
clothes others have bought in the past (collaborative filtering), it
can employ a goal-based recommendation technique and suggest
items that can be combined with clothes the user has bought in
the past to form complete outfits.

Another rich source of goal implementations are social net-
works or specialized web sites where users record and share
success stories of things that they do in life. Examples include
43Things (https://43things.com) and wikihow (www.wikihow.com),
where users describe actions to achieve real-life goals. There are
many works on transforming such textual descriptions into a struc-
tured form, like an ontology [10, 14, 17], or a taxonomy [6, 21].
They typically employ structural information such as HTML tags
or enumeration. A different way to create such datasets from web
pages is by posing queries of the form “in order to + a goal
description” on search engines [21].

i1	 i2	 i3	 i4	 i5	 i6	
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Figure 1: Combinations and the goals they serve

One of the datasets that we are using in the experimental evalu-
ation of this work contains 18k goal implementations that we have
extracted by performing action identification on user-generated
descriptions about everyday goals such as learn english, travel to
Italy and so forth from the 43Things website. We did this action
extraction with a module that we have developed for this purpose,
that works on a simpler model and for plain text (ref. Section 4).
We do not elaborate further on the extraction task since it is or-
thogonal to the focus of the current paper and a different line of
work of ours.

Example 3.2. Figure 1 depicts a set of goal implementations
from an online clothing store. We denote a goal implementation
set as L. The columns indicate outfit purposes (the goals) while
the rows are the items (the actions). If we depict by ak the action
of buying the item ik , then the implementation set is:

Implementation ⟨Goal,Activity⟩
p1 ⟨д1,A1⟩ where A1={a1,a2,a3}
p2 ⟨д2,A2⟩ where A2={a1,a2,a4}
p3 ⟨д3,A3⟩ where A3={a1,a4,a5}
p4 ⟨д3,A4⟩ where A4={a3,a5,a6}
p5 ⟨д3,A5⟩ where A5={a1,a3,a5,a6}

Recommendation Setting We assume an implementation set L.
The set may have been constructed through one of the many meth-
ods mentioned earlier that are already available in the literature, or
through the text-based module we developed for the experimental
evaluation.

The actions that the user has already performed is referred to
as the user activity H . We do not know why these actions have
been performed but given the goal implementation set. there is
a number of possible goals that the user may have had in mind
when performing each of these actions. These goals constitute the
goal space of the activity H .

The goal space makes all the actions that contribute to one or
more goals in the goal space to be likely of interest to the user.
Our aim is to recommend to the user actions that are not in H ,
and which the user would be happy to perform. However, not all
the actions offer the same benefit. What action the user would be
more willing to perform depends on what priorities the user puts
on the goals. Some actions may help towards the fulfillment of
many goals, while others towards the fulfillment of goals almost
completed. Thus, we need to create a ranked list of the actions
to recommend according to some criterion. Depending on the
criterion/policy we use, a different recommendation strategy is
materialized. These policies comprise the topic of the next section.
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Figure 2: Illustration of our model.

4 GOAL MODEL
Our aim is to recommend to the users a set of actions considering
the goals that they can fulfill given their activity. Those goals are
associated with at least one action from the user activity, i.e., at
least one action contributes to one or more of their implementa-
tions. An action a∈A is said to contribute to a goal д through a
goal implementation p, when there exists a goal implementation
p=⟨д,A⟩. and we denote it as a{pд.

The set of goals that are associated with an action forms its
goal space.

Definition 4.1. Given a goal implementation set L, the goal
space of an action a is the set GS(a)={д | д∈G ∧ p∈L ∧ a{pд}.

The goal space extends naturally to the case where we have a
set of actionsA instead of one, to be the union of the goal spaces of
the individual actions in A, i.e., GS(A)=∪a∈AGS(a). Considering
the individual goal spaces of each action a∈H={a1, .. , ,an} there
are two extreme cases: (i) GS(a1) ∩ . . .∩ GS(an ) = ∅ (i.e., there
are no common goals) and (ii) GS(a1) ∩ . . .∩ GS(an ) = GS(H )
(i.e., the goal spaces of all actions are the same), where we have
no evidence whether one or more goals constitute a priority for the
user. In all the other cases the goal spaces are a valuable source of
information and should be exploited for retrieving the actions.

Another important factor that should be considered is that ac-
tions are not independent from each other since subsets of actions
co-contribute to one or more goals. Therefore, given an action,
there exist other actions that should be also performed in order for
a goal in the goal space to be fulfilled. The set of these actions
forms the action space of an action.

Definition 4.2. Given a goal implementation set L, the action
space of an action a is the set AS(a)={a′ | д∈G ∧ p∈L ∧ a{pд
∧ a′{pд ∧ a,a′}.

The action space, similarly to the goal space, extends naturally
to the case where we have a set of actions A instead of one, to be
the union of the action spaces of the individual actions in A, i.e.,
AS(A)=∪a∈AAS(a).

Example 4.3. In the implementation set of Example 3.2, since
action a1 participates in the activities A1, A2, A3 and A5, its imple-
mentation space is the IS(a1)={p1,p2,p3,p5}, and its goal space
the GS(a1)= {д1,д2,д3,д5}. Its action space is the set of all the
other actions in A1, A2, A3 and A5, i.e., AS(a1)={a2, a3, a4, a5,
a6}.

Thus, above we have determined two very important associ-
ation types that correspond to two basic “operations” given an
activity, i.e., a set of actions A: to form the goal space GS(A), and

the action space AS(A). Moreover, we need a matching function
connecting the goals with the action set(s) that implement them.

We suggest a model that sees each activity A in the L as a hyper-
edge that connects the actions that participate in it. Moreover,
it labels each activity A with the goal that fulfills given a goal
implementation ⟨д,A⟩. Figure 2 graphically illustrates our model
that we call association-based goal model.

Given a small goal implementation set, we can, for instance,
form the user goal space by visiting one by one all the imple-
mentations and check whether there exist any common actions
in the user activity and their activity (i.e., the set intersection).
However, when moving to hundreds or millions of implementa-
tions, the cost gets prohibitive. Therefore, we should implement
our model in a way that apart from capturing all the associations,
allows us to form efficiently the goal and action spaces consid-
ering the interconnections among actions and goals through the
goal implementations.

In order to retrieve the information we need in real time, we
employ a set of indexes. We first build an index A-idx for the action
set and an index G-idx for the goal set. Keeping the information
derived from the goal implementation set L needs a more complex
structure. We refer to each goal implementation using a unique
identifier id. We split the information of the goal implementation
pairs in two indexes: Goal Implementation ActiVity index (GI-AV-
idx) and GI-G-idx (Goal Implementation Goal Index (GI-G-idx).
The first one matches the activity of a goal implementation to
the id of the goal implementation where it belongs. We store a
set with the ids of the actions. The second index matches each
goal id to all the implementation ids that exist for the specific
goal. Now we need to connect the goal implementations with the
actions they contain. For this, we use A-GI-idx (Action to Goal
Implementation Index) that retrieves all the goal implementation
ids where an action contributes, i.e., the implementation ids (pIds)
s.t., a {p д.

Equations 1 and 2 describe how we exploit the above index
structures to implement the basic operations that we described
earlier, i.e., to form the goal and action space given an activity.

GS(A)={GI -G-idx[pId] | a∈A ∧ aId=A-idx[a]

∧pid=A-GI -idx[aId]}
(1)

AS(A)=A−{GI -AV -idx[pId] | a∈A ∧ aId=A-idx[a]

∧pid=A-GI -idx[aId]}
(2)

5 STRATEGIES
Having built the association-based goal model described above,
we can retrieve the actions to be recommended exploiting their
associations with the actions in the user activity and the goals
in the user goal space. In practice, we perform set operations to
evaluate how strong the associations are. We suggest different
strategies considering options with which we believe users prior-
itize actions. The first strategy examines the associations of the
user activity and each of the sets of actions that contribute to goals
from the user goal space. Examining each set of actions separately
and not in conjuction with other action sets as well helps users to
stay focused on one goal at a time (Focus strategy). On the other
hand, the second strategy examines more than one action sets at
the same time. For this reason we call it Breadth. Breadth gives
priority to actions that are strongly associated with each other
and the user activity; such actions can be exploited in the fulfill-
ment of a subset of the user goal space at the same time. There is



also a third strategy that considers at the same time all the action
sets that are associated with the user activity. In this case, the
associated goals are an evidence of the user preferences on goals
(goal-oriented profile). The strategy is referred to as Best Match.
The three strategies that are called respectively Focus, Breadth
and Best Match are described in the Subsections 5.1 and 5.2, 5.3
respectively.

5.1 Focus
Strategy Focus gives the user the option to have access to actions
that lead to the completion of one of the goals in the user goal
space. For an action set A in a goal implementation ⟨д,A⟩ where
д ∈GS(H ), the intersection | A ∩ H | gives the number of actions
in the implementation that have been already performed. Focus
does consider the association of the user activity and the actions
sets in the implementation set. But that is not enough to retrieve
the actions that together with a subset of the user activity H form
the activity of a goal implementation in the library L, i.e., they
comprise the actions that are required for the goal to be completed.
For this purpose we introduce two measures, goal implementation
completeness and closeness, that evaluate and rank the candidate
action sets and by extension the respective goal implementations.
Completeness considers the proportion of the actions that are
common in the user activity (set intersection) and the actions in
the examined action set while closeness considers the common
actions in comparison with the remaining actions.

completeness(⟨д,A⟩,H ) = |A ∩ H |/|A|⟩ (3)

closeness(⟨д,A⟩,H ) = 1/|A − H | (4)
Goal implementation completeness is inspired by plan infer-

ence in plan libraries for intelligent agents [5]. However, in intel-
ligent agents the aim is to predict which sequence of actions the
agent is following (i.e., the agent has already selected a plan) while
in our problem the recommendation mechanism aims to guide
the user to options that s/he may have not considered without the
recommendation system.

Algorithm 1 Focus Ranking

Ranks actions based on completeness (step 3) or alternatively
closeness (step 3∗) of the corresponding goal implementations
Input Set H , Set CA, int k
Output List R
1 CI←[],R←{}
//get the goal implementations that connect the goals in
GS(H) with the actions in H
2 for all aId ∈ H , for each pid ∈ A-GI-idx[aId]
3 IS= { A-GI-idx[aId] | a ∈ A∧ aId=A-idx[a] }
4 end for all
5 for each pId in IS
6 ⟨p, sc⟩← ⟨ pId, |A∩H |

|A | ⟩

6∗ ⟨p, sc⟩← ⟨ pId, 1
|A−H | ⟩

7 CI .add(⟨д,A⟩,sc⟩)
8 end for all
9 rank CI based on sc
10 return the top k actions from the action sets of the top

implementations (set CI )

We rank the goal implementations in the set of the implemen-
tations that are associated with the user activity in descending

order of completeness. Given this ranking, the list of action rec-
ommendations is formed as follows. We pull from the first goal
implementation all the actions that have not been performed yet,
i.e., that are not in the user activity, and we add them to the recom-
mendation list. If more actions are needed for the top-k list, we
pull the next goal implementation and so forth, until the list gets
full. Note that it may be the case that the remaining slots in the
top-k list are fewer than the actions of the next goal implemen-
tation in the ranked list of implementations. In this case, we can
decide to leave the list with fewer recommendations or expand k
to include the required actions for this implementation.

The completeness ranking function promotes the actions in
the activities of the goal implementations with the largest com-
pleteness (see Algorithm Focus Ranking, line 3). This way the
recommendation mechanism guides the user to actions that will
lead to the fulfillment of the goal for which the user has already
done most of the work, i.e., she has performed most of the actions
needed for its fulfillment.

5.2 Breadth
With the strategy Focus, a single goal drives the recommenda-
tion process. This can be very restrictive if the user is not that
determined to fulfill the specific goal. Therefore, we give the user
another option: Breadth that evaluates every candidate action a
considering a subset of goals in the goal space. This subset con-
sists of the goals that are connected to the candidate action a
through one or more goal implementations, i.e., the goal space
GS(a). The reasoning behind this is that since every action in
the action set A can participate at the same time in more than
one goal implementations in the set L and possibly contribute to a
number of goals, its benefit should be estimated based on all these
goals.

First, in order to evaluate a candidate action a, we should take
into consideration the number of goal implementations in its im-
plementation space, i.e., the IS(a). We will refer to this quantity
as utility.

u(a) = |{A −GI − idx[aId] | a ∈ A ∧ aId = A − idx[a]}| (5)

∀pid ∈ A-GI-idx[aId]. The larger the utility of an action, the
larger the benefit that the user can have by a single action. For
instance, in the Example 3.2, the action of buying item i5 (i.e.,
a5) is part of three goal implementations: p3, p4, p5, i.e., it can be
used in 3 different outfits. Hence, it can be considered as more
beneficial to the user compared to the action of buying i6 (i.e., a6)
that contributes only through 2 goal implementations: p4 and p5.
However, considering the user activity H={a2, a3}, we remark
that the user has not showed interest to goal implementation p3
(p3 < IS(H )). Consequently, goal implementation p3 should not
have been taken into consideration. Thus, we need a measure
that captures the utility of an action considering the user activity
as well. Moreover, recommending actions of high utility is not
enough. We should also consider how related, or else strongly
connected, is a candidate action to the user activity. To do so, we
need to consider how many of the actions in the user activity are
connected to action sets that fulfill goals in the examined goal
subspace.

sc(a,H ,Breadth) =
∑

∀⟨д,A⟩ whereA∪H,∅, anda∈A

| A ∪ H | (6)

The above equation captures both the utility of a candidate
action and its relatedness to the user activity. Now, we can rank



Algorithm 2 Breadth Ranking

Ranks Candidate actions based on all the Implementations
of the user’s Implementation space where they participate
Input: Set H (user activity), int k
Output: top k actions
1 R← {}
2 for all aId ∈ H , for each pid ∈ A-GI-idx[aId]
3 IS= { A-GI-idx[aId] | a ∈ A∧ aId=A-idx[a] }
4 for each pId in IS:
5 ActionsInP← GI-AV-idx[pId]
6 comm←| ActionsInP∩H |
7 for each aId ∈ ActionsInP
8 if aId in R.keys:
9 R.add( ⟨ aId, R[aId] + comm ⟩)
10 else:
11 R.add( ⟨ aId, comm ⟩)
12 rank R on score value and return the top k actions

the candidate actions and get the recommendation list R. To form
the recommendation list, we rank the candidate actions using the
function described in Equation 6.

Algorithm Breadth Ranking presents in pseudocode the steps of
the Breadth. The algorithm does not estimate the score (ref. Eq. 6)
of each action in the AS(H) separately. It examines each asso-
ciated implementation and updates the score of all the actions
of the AS(H) that belong in the current implementation. This
way, when all the implementations have been examined the action
scores (ref. Eq. 6) are ready and the action ranking takes place.

5.3 Best Match
Best Match policy in contrast to Breadth that evaluates each action
in the user action space considering only the goals in the goal space
to which this specific action contributes, considers the whole goal
space. In fact, it generates a user profile that reflects the effort that
the user has made towards all the goals and retrieves actions that
contribute similarly to those goals. Best Match considering the
user goal space, represents every action as a vector and aggregates
the representations of the individual actions in the user activity
into a single vector. The final vector constitutes the user profile.
Subsequently, the candidate actions can be ranked based on their
similarity to the user profile. Such an approach promotes actions
that contribute to most of the goals in the user’s goal space.

Goal-based user representation. In recommendation systems, user
profiles are described in terms of the features of the items that
a user prefers. In our case, a profile captures the user dedication
towards a set of goals. We consider that the more actions from
the user activity H contribute to a specific goal in the goal space
GS(H ) of the user activity, the more the user cares for this goal.

Hence, we consider that an action a can be represented as a
vector ®a in the feature space F GS(H ) (as an item is represented by
considering features in content-based recommendation methods).
One option would be to form a boolean vector, ∀i∈ {0, |GS(H )|},
where д←F GS(H )[i]:

®a[i] =

{
1, i f ∃p ← ⟨д,A⟩ s .t . a ∈ A,д ∈ GS(H )
0,otherwise (7)

The problem with the above representation is that it disregards
the fact that an action in the user activity may contribute to a goal
through one or more implementations. Therefore, instead of the
boolean representation, we adopt a vector representation where
®a[i] is defined to be the number of goal implementations p s.t.

Algorithm 3 Get-Goal-Based-Profile

Creates the user profile that reflects her connections with the
Goal Space
Input: Set H (user activity)
Output: ®H vector in GS(H ) that aggregates the contribution of
all actions in H
1 ®H←∅
2 GPmap←∅

3 for all aId ∈ H , for each pid ∈ A-GI-idx[aId]
4 IS= { A-GI-idx[aId] | a ∈ A∧ aId=A-idx[a] }
5 for each pId in IS:
6 gIdTmp← GI-G-idx[pId]
7 if gIdTmp in GPmap .keys:
8 GPmap [gIdTmp]← GPmap [gIdTmp]+1
9 else:
10 GPmap [gIdTmp]←1
11 /*convert map GPmap to a vector in F GS(H ) space*/
12 for each gId in GS(H)
13 ®H .add(GPmap [gId])

a{pд and д∈GS(H ). The value in each position of the vector ®a
becomes ∀i∈ {0, |GS(H )|}, where д←F GS(H )[i]:

®a[i] =
∑

∀p←⟨д,A⟩ s .t . a∈A, д∈GS(H )
1, (8)

To get the user profile, we aggregate all the representations of
the actions of the user activity in the feature space F GS(H ) into
a single vector. The user profile captures for each goal in GS(H )
how many of the user actions contribute to this goal considering
the different goal implementations for the same goal as well. Since
the user profile is generated based on the current user activity H ,
we denote it as ®H .

®H =
∑

∀a∈H
®a (9)

For example, for the user activity: H={a2, a3}, the number of
goal implementations where at least one of the actions of the user
activity participate is 4. The user profile is ®H ={ 3, 0, 2 }. In the
user profile is reflected the fact that the user has performed a1 and
a3 that contribute to д1: “meeting friends” 3 times and to д3:“going
to the office” via one goal implementations each, and that the user
has shown her/his preference to the goals д1 and д2 over the rest
of the goals in the goal space GS(H ).

Goal-based representation of candidate actions. To rank the can-
didate actions against the user profile, we represent each candidate
action in the same goal space, i.e., as goal vectors in the space
F GS(H ) in the exact same way the actions from the user activity
have been represented (ref. Eq. 8).

Distance-based Ranking. To rank the candidate actions, we can
use a standard metric between the user profile and each of the
candidate actions, as follows:

sc(a,H ,Best Match) = dist( ®H , ®a) (10)

For instance, considering the Example 3.2, action a1 from the
user activity H would be closer (smaller distance) to the user
profile than that of a4 since the first contributes to д1: “meeting
friends” via two goal implementations and via another goal im-
plementation to д3:“going to the office” as well; while the latter
contributes to д1 via only one goal implementation and to д2:“be
warm” to which the user has shown no interest.



Algorithm 4 Best Match Ranking

Ranks actions based on their distance to the goal-based user
profile
Input user activity H , int k
Output top k actions
1 R←{}, CA←AS(A)-H
2 ®H←Get-GoalBased-Profile(H )
3 for each aId in CA:
4 GPmap←∅

5 IS ← IS(aId)
6 for each pId in IS:
7 gIdTmp← GI-G-idx[pId]
8 if gIdTmp in GPmap .keys:
9 GPmap [gIdTmp]← GPmap [gIdTmp]+1
10 else:
11 GPmap [gIdTmp]←1
12 /*convert map GPmap to a vector in F GS(H ) space*/
13 for each gId in GS(H)
14 ®a.add(GPmap [gId])
15 ⟨aId, sc⟩←⟨ aId, dist(®a, ®H )⟩
16 R.add(⟨ aId, sc ⟩)
17 rank R on sc and return top k actions

Algorithms Get-GoalBased-Profile and Best Match Ranking de-
scribe the procedure. Get-GoalBased-Profile forms the goal-based
vector representation of the user (user profile) by considering for
each action in the user’s activity all the implementations where
the examined action belongs (i.e., its implementation space) in
order to find to which of the goals of the user’s goal space it
contributes and add one in the respective position of the vector ®H .
On the other hand, Best Match Ranking compares the user profile
with the goal-based vector representation of each action in CA
by considering again the goal implementation space of the actions
and the goals to which they contribute. and ranks them according
to their distance with the user profile to get the top k.

5.4 Complexity analysis of strategies
The complexity of the goal-based recommendation mechanisms
is mainly determined by the action connectivity of the association-
based goal model, i.e., the average number of implementations
where an action belongs. Focus first retrieves all the implemen-
tations that are associated with the user activity and estimates
the closeness or the completeness of each of the implementations.
Therefore, the cost of the mechanism is estimated as the product of
| H |, connectivity and of the cost of set intersection or asymmetric
set difference that are the main operations of the two alternatives
of the Focus algorithm. The estimation of completeness may be
more time consuming in practice (ref. Figure 7). For instance, in
our implementation, intersection takes more time than set differ-
ence for sets of equal size due to the larger number of element
removals that are required in the latter. Best Match also starts with
retrieving the implementations that are associated with the user
activity and then transforms them to vectors in the feature space
F GS(H ) (O(| H |*connectivity)). Subsequently, this transforma-
tion is also performed in all the actions in the action space of the
user activity AS(H ). For an action a, the complexity of forming
its space AS(a) depends again on the action connectivity and the
average implementation length. Since connectivity is significantly
higher than the size of the average goal implementation and the

user activity, the time cost is mainly determined by connectiv-
ity: O(connectivity*|H | + connectivity*average implementation
length). On the other hand, Breadth retrieves the associated im-
plementations and gets the intersections of the actions in each of
the implementations and the user history. The asymptotic time
complexity for the first step is O(|H |*connectivity) and for the
second step O(connectivity*set intersection cost).

In practice, if we consider two association-based goal models
built on sets of the same connectivity with the second one contain-
ing more implementations, the recommendation time would be
higher for the set with the larger number of implementations. The
reason is that in larger implementation sets the spaces of associ-
ated actions, goals and implementations of the individual actions
in the user activity are not overlapping and by consequence their
union gets larger. Nevertheless, the algorithms scale very well
even on sets of millions of implementations (ref. Figure 7).

6 EVALUATION
For our experimental evaluation, we examine two different scenar-
ios: (a) a grocery store where clients (users) buy food products,
and (b) a system where users record actions they perform in their
lives such as read a book or eat healthy. We selected these sce-
narios to show that goal-based recommendation can be used both
in practical scenarios where existing recommendation techniques
have already been applied, and to offer innovative services that
have not been available so far. In both scenarios, we want to rec-
ommend to the users actions of interest (i.e., buy + “a product”
and everyday actions respectively). The actions are characterized
to be of interest based on the goals that they serve: food products
can serve food recipes, while everyday actions can serve life goals
such as lose weight or learn english. Another reason for examin-
ing these scenarios is that they cover two different cases: the first
one covers the case where the same action participates in a great
range of goal implementations (on average 1.2K impl.), while in
the second case, most actions are limited to specific “families” of
goals (on average an action participates in 3.85 implementations).

Dataset Description. The first dataset is an open source grocery
shopping dataset (https://github.com/julianhyde/foodmart-data-mysql)
that contains 1560 food products (items) and records of customer
purchases in different time slots, i.e., carts. The food products are
organized in 128 (sub)classes such as “baking goods”, “seafood”,
“fruit”, “spices” and so forth. Clients can utilize these products
in various recipes to produce different dishes (goals). We used a
dataset of 56.5k recipes from a food ontology (http://data.lirmm.fr/
ontologies/food#Recipe). The number of implementations in which
an action participates on average, i.e., the connectivity, is 1.2K.
We run our recommendation techniques and the state-of-the-art
algorithms using as input, i.e., current user activity, 20.5k client
carts.

The second dataset consists of goal implementations from a
goal-setting online social platform called 43Things where users
could publish the goals they set in their lives, “cheer” other users’
goals and efforts, and provide descriptions about how they man-
aged to fulfill their goals. We have extracted 18047 goal imple-
mentations that contain 3747 goals such pay my depts, get a new
job, lose weight, and 5456 actions e.g., stop eating at restaurants
and drink more water. Both goals and actions are identified by
unique identifiers. In contrast to the foodmarket dataset, users
are focused on a few real-life goals. In total, we have examined
8071 users. The majority of the users (5047 users) are pursuing
one goal, 1806 of them pursue 2 goals, 623 pursue 3, and 595



Goal Id Actions Performed for Goal Fulfillment
д1 {3,4,5,6,7, 8,9,10,11}
д2 {12,13,14,15,16,17,18,19,20}
д3 {1,2}

Initial User Activity {3,4,5,6,7, 8,9,10,11,12,
13,14,15,16,17,18,19,20,1,2}

User activity used as input
(unhidden actions) {11,20,8,12,1,13 }

Table 1: Forming of user activity.

pursue more than 3 goals. Moreover, the action connectivity is
very low, 3.84. The fact that actions here in contrast to actions that
involve food ingredients are useful in a narrow range of goals and
by extension goal implementations makes the analysis of the two
sets more intriguing. User activities consist of all the actions that a
user has performed for the fulfillment of all the goals that s/he has
set. Therefore, in order to evaluate the recommenders we should
hide a portion of the actions from the real user activities before
applying the recommendation techniques. For instance, Table 1
illustrates all the actions that a user has performed to fulfill three
goals. To get the input for the recommenders, we first concatenate
the actions of the three respective implementations into the vector
{1, 2 . . . 20}. Subsequently, the vector elements are shuffled and
the 30% of the actions is considered to be the known user activity.
The rest 70% is kept for evaluation purposes. Specifically, the
recommenders, having some evidence that the user is interested in
fulfilling one or more goals, should retrieve actions that are asso-
ciated with those goals. In the example, the activity that remains
unhidden consists of 6 actions. Two of the actions regard the first
goal, three of them the second goal, and one action regards the last
goal. Actions are both about goals that are closer to fulfillment
and about goals for which there is no strong evidence. Some goals
may also remain hidden.

Comparison with the State-of-the-art. Beyond the goal-based
mechanisms, we examine how state-of-the-art recommendation
approaches behave under the same context. We consider a nearest-
neighbor Collaborative Filtering method (CF KNN) [20] and a
matrix factorization method that employs alternating least squares
with weighted-lamda-regularization (ALS-WR) to factorize the
user-item matrix before performing the recommendations (CF MF)
[8]. For the CF KNN since the user feedback is implicit, i.e., user
selection, non-selection, the neighborhoods have been formed by
employing jaccard coefficient, or else Tanimoto coefficient. The
used implementation of the CF MF is from Mahout framework
(https://mahout.apache.org/). We also consider a Content-based
method that represents actions and users using domain-specific
features, i.e., that builds vector-based representations for profiling
the actions and users. For the foodmarket dataset the used domain-
specific features are the 128 (sub)categories of the food products
(e.g., “baking goods”, “seafood”). Based on the description of each
food product, we matched each product to an ingredient leaving
out products that are not included in any recipe, such as napkins.
Therefore, each cart can be seen as the user activity, the set of
recipes as the goal implementation set L, while the actions refer
to the purchase of certain products/ingredients. On the other hand,
for the 43T dataset, there are no widely accepted domain-specific
features; therefore, we do not apply the content approach. For
the goal-based recommendations, we used the methods described
in Subsections 5.1, 5.2, and 5.3), namely Focuscmp and Focuscl ,
Breadth and Best Match.

Subsection 6.1 compares all methods. Subsection 6.2 focuses
on the time efficiency of the goal-based methods.

6.1 Evaluation and Comparisons
Since we are introducing a novel recommendation approach, in
Subsection 6.1.1, we first verify that this approach, indeed offers
a different perspective to the users. To do so, we perform several
comparisons on the results (i.e., the recommendation lists) pro-
duced by all the goal-based and the standard recommendation
mechanisms.

• We compare the lists formed by the goal based mechanisms
with the two standard recommendation mechanisms (ref. C.1.1.
Result Overlapping).

• Collaborative filtering is based on the past activities of similar
users (to the current user), while our algorithm is intended for
discovering useful actions, i.e., actions that will help the user
fulfill one or more goals. Thus, we examine whether actions
that appear frequently in the activities of other users (popular
actions) appear frequently in the recommendation lists as well.
In other words, we study which recommendation mechanisms
perpetuate the collective user behavior (ref. C.1.2. Correla-
tion of appearances in the user activities and the respective
recommendation lists).

• Next, we examine how useful the actions in the top-10 lists
of each algorithm are for the user. To measure usefulness, we
estimate the completeness of the goals in the user’s goal space
after s/he performs the recommended actions (ref. C.1.3. Use-
fulness).

• We also study how similar the recommended actions in each
list are presenting their (max, min and avg) pairwise similar-
ity based on their domain-specific characteristics. Retrieving
items that are very similar to each other is often considered
a drawback of the Content-based filtering. It is important to
understand how the rest of the examined approaches work
as well (ref. C.1.4. Pairwise similarity of the recommended
actions).

• Moreover, we examine how many of the actions in the rec-
ommendation lists have been indeed performed by the users.
These actions are not of course part of the considered user
activity but the users “like” them since they have performed
them at some point (ref. C.1.5. Average Percentage Of Recom-
mended Actions that the user has indeed Performed.)

Subsequently, Subsection 6.1.2 further examines the actions
retrieved by the goal-based mechanisms (ref. C.2.1 Frequency of
Retrieved Items) and presents the percentage of common actions in
their top-10 recommendation lists (ref. C.2.2 Result Overlapping
of Goal-based methods).

6.1.1 Comparison of all Approaches. C.1.1. Result Over-
lapping. Table 2 illustrates a very low overlapping of the top-10
lists formed by the goal-based mechanisms with the lists formed
by the two state-of-the-art approaches. This result is expected,
since as we have explained in Section 2, these approaches adopt
fundamentally different philosophies.

C.1.2. Correlation of the number of appearances in the user activ-
ities and the number of appearances in the respective recommen-
dation lists of the top-20 most popular actions. Table 3 illustrates
the Pearson’s correlation between these two numbers. Correlation



Food Market 43T
Methods Overlap.with Overlap.with Overlap. with Overlap. with Overlap. with

Content Filt. Collab. Filt. kNN Collab. Filt. Matrix Factorization Collab. Filt. kNN Collab. Filt. Matrix Factorization
Best Match 2.31% 0.85% 0.34% 0.13% 0.06%
Focuscmp 1.49% 0.85% 0.36% 0.11% 0.008%
Focuscl 1.85% 0.85% 0.35% 0.08% 0.01%
Breadth 2.32% 0.86% 0.35% 0.26% 0.11%

Table 2: Overlap of the top-10 actions retrieved by the goal-based mechanisms and the standard recommendation approaches.

Food Market 43T
Methods Correlation Correlation
Content 0.115 -
Collaborative KNN 0.45 0.75
Collaborative MF 0.78 0.87
Best Match -0.13 -0.24
Focuscmp -0.048 -0.26
Focuscl -0.02 -0.27
Breadth -0.04 -0.15

Table 3: How correlated the recommendation lists with the
top-20 popular actions in the user activities are.
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Figure 3: The average goal completeness per list after the user
follows the recommended actions in each list.

takes negative values from -1 to 1, with 1 reflecting highly cor-
related values. Collaborative filtering, which looks into the past
actions of similar users for actions that may be of interest to the
current user, shows the highest correlation. On the other hand,
goal-based methods show negative correlation. They do not pro-
mote actions that were popular (frequent) so far. The content-based
approach shows a lower correlation than collaborative filtering,
which is still high in comparison to the goal-based methods.

C.1.3. Usefulness: the completeness of the goals in the user’s goal
space after s/he follows the recommended actions. The actions
recommended to the user can help her get closer to the fulfillment
of (or fulfill) one or more goals. Table 4 shows the average average

Food Market 43T
Methods Completeness Completeness

Avg- Avg- Avg- Avg- Avg- Avg-
Avg Max Min Avg Max Min

Content 0.09 0.67 0.05 - - -
Collabo- 0.08 0.63 0.05 0.29 0.32 0.26
rative KNN 0.29 0.33 0.26
Collabo- 0.08 0.64 0.05 0.29 0.32 0.26
rative MF
Best 0.15 0.79 0.076 0.82 0.87 0.77
Match
Focuscmp 0.12 0.73 0.064 0.83 0.88 0.77
Focuscl 0.13 0.74 0.062 0.789 0.84 0.73
Breadth 0.16 0.8 0.076 0.76 0.8 0.72

Table 4: How complete become the goals of the user after s/he
follows the recommended actions per list.

(AvgAvg), min (MinAvg) and max (MaxAvg) completeness val-
ues for all the recommendation lists formed for the two datasets.
Figure 3 shows graphically the average values. These values are
estimated by finding first the average, minimum and maximum
values of completeness of all the goals that are related to the user
considering each list separately. Subsequently, the average for all
the recommendation lists is estimated. The goals that we consider
in the estimation of goal completeness in the case of the 43T are
those that the user has added in the system, while in the case of the
food market we consider the whole user’s goal space since we do
not have any information about which goals the user is pursuing in
reality. In the foodmarket dataset, the goal implementation space
can be large and not every goal can be fulfilled by performing
only 10 actions (i.e., the actions in the recommendation list) in
any case. As a consequence, the AvgAvg values in this dataset are
not that informative in comparison to those of the 43T dataset.

We observe that Breadth and Best Match in the first dataset and
Focuscmp in the second dataset manage the largest completeness
(considering both the user activity and the recommended actions),
while the lowest contribution is met in the state-of-the-art algo-
rithms. The results are explained by the fact that Best Match con-
siders the whole user’s goal implementation space, Breadth creates
a well-connected subspace, while Focuscmp selects a single goal
(actually a single implementation), if possible, and extends to a
few more to complete the recommendation list. If the user wants
to get closer to a wider range of goals, s/he should select Breadth;
otherwise (i.e., if s/he is focused on a few goals), s/he should select
Focuscmp . Best Match and Focuscl follow.

C.1.4. Pairwise similarity of the recommended actions (i.e., the
corresponding products) in each list. Table 5 shows the pairwise
similarity among the retrieved actions in each recommendation
list. Due to the lack of widely-accepted domain-specific character-
istics for the actions in the 43T dataset, we study the food market



Methods Pairwise Action Similarity
AvgAvg AvgMax AvgMin

Content 0.81 1 0.6
Collaborative KNN 0.16 0.5 0.05
Collaborative MF 0.15 0.77 0.04
Best Match 0.33 0.72 0.22
Focuscmp 0.24 0.31 0.21
Focuscl 0.24 0.34 0.19
Breadth 0.33 0.73 0.22

Table 5: Pairwise feature-based similarity among the actions
within each recommendation list for the foodmarket dataset.

dataset. AvgAvg is estimated in two steps: first the average pair-
wise similarity considering all the action pairs within each list is
estimated, and then the average of the derived values is estimated.
The same applies for AvgMax and AvgMin. As expected Con-
tent shows the highest value with an AvgAvg pairwise value 0.8
and AvgMin value 0.6. Collaborative filtering shows the lowest
similarity (AvgAvg 0.15), while all goal-based mechanisms are
found in the middle (avg-avg: 0.24-0.33). However, looking at
the average maximum pairwise values (AvgMax), we see that the
goal-based methods Best Match and Breadth often share a pair of
very similar actions in their lists (on average their max pairwise
similarity values are 0.72 and 0.73 respectively). The two Focus
methods are the goal-based methods that retrieve highly dissimilar
actions in most of the cases.

C.1.5. Average percentage of recommended actions that the user
has indeed performed (per recommendation list). In the food mar-
ket dataset, we consider as the user’s current activity a single cart;
we have more than one cart for the same user in different time
slots though. On the other hand, in the 43T dataset we consider
only the 30% of the actions that the users have performed to ful-
fill their goals. Therefore, we can check whether the different
techniques by considering only the actions in the user activity,
recommend actions that the user has performed. We should clar-
ify that the average percentage of recommended actions that the
user has indeed performed does not reflect the precision of the
recommendation tasks since the user has not acted after checking
the recommendation lists. In fact, it shows the percentage of the
recommended actions for which the user has shown interest at
some point. Unlike precision, being able to retrieve actions that
the user would anyway perform can be an advantage or a disad-
vantage for a recommendation technique depending on the view
point of the application. If the purpose of the recommendation
system is to show to the user unknown actions as well, a very
high percentage is not preferable. On the contrary, if the purpose
of the system was to provide the user with a discount coupon in
order to keep her/him satisfied, a high value would be preferable.
Keeping that in mind, we can say that the average percentage
represents the Average True Positive Rate. Figure 4 illustrates
for each method the Avg TPR for top-5 and top-10 lists. In the
top-5 lists, first the Best Match, then the Focuscmp and Breadth
show the largest percentage. In the top-10 lists of the foodmarket
dataset though, it is the Content method that shows the highest
percentage. Nevertheless, all the methods show low percentages
in the foodmarket dataset. This is explained by the fact that we
have no more than 3 carts for each user.

6.1.2 Further Comparison of Goal-based results. Con-
sidering the lists derived from the goal-based methods, we have
already argued about the fact that the appearance of an action in
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Figure 4: Percentage of recommended actions that the user
has indeed performed (True Positive Rate for top-5 and top-
10 lists).

the recommendation lists is not correlated to its appearance in
the user activities (ref. Table 3). Next we also present whether
there exist actions that monopolize the recommendation lists, and
how different the recommendation lists formed by the alterna-
tive goal-based methods are (Result Overlapping of Goal-based
methods).

C.2.1. Frequency of Retrieved Items. In recommenders, we do not
want certain actions to monopolize the recommendation lists. In
the 43T dataset, the frequency of an action in different recommen-
dation lists is very low: at maximum 0.001. On the other hand,
in the food market dataset, where there are a lot of actions that
participate in a great number of implementations (average connec-
tivity 1.2k), the frequency is higher. Figure 5 illustrates that the
majority of actions appear with frequency less than 0.2. However,
Best Match and then Breadth, in their effort to serve more than one
goal at the same time, repeat the same actions in more recommen-
dation lists (22% and 14% actions respectively with frequency
above 0.2). The actions with high frequency are those that ap-
pear frequently in subsets of implementations that share common
actions. Actions that appear in many goal implementations but
together with different actions in each goal implementation are
not selected more frequently. On the contrary, Figure 6 shows that
very few actions that appear frequently in the goal implementation
sets are in the end selected by any goal-based mechanism. The
great majority (more than 92%) of the retrieved actions (by all the
goal-based mechanisms) appear in the implementation set with a
frequency less than 0.2.

C2.2. Result Overlapping of Goal-based methods. In Paragraph C1.1,
we have presented how different are the results of the goal-based
mechanisms from those of the standard recommendation methods,
next we present the result overlapping of the goal-based mecha-
nisms. Table 6 illustrates the percentage of common actions in
their top-10 lists considering again as input the 21k real carts and
the 8k user activities of the food market and the 43T datasets
respectively. First of all, we observe a great overlapping in the
results of Best Match and Breadth: 98% and 79% respectively.
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Figure 5: How often the same action appears in the recom-
mendation lists that have been formed for the user activi-
ties of the food market dataset. Distribution of actions in fre-
quency ranges.
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Figure 6: How often the same retrieved action appears in the
goal implementation set (herein recipes). Distribution of ac-
tions in frequency ranges.

Food Market 43T
Methods Overlapping Overlapping
Best Match-Focuscmp 42% 68%
Best Match-Breadth 98% 79%
Focuscmp -Breadth 44% 71%
Focuscl -Focuscmp 35.6% 78%
Focuscl -Best Match 49% 72%
Focuscl -Breadth 49% 72%

Table 6: Common actions in the top-10 recommendation lists.

The overlapping is higher in the first case because in the food
market ingredients participate in a lot of recipes at the same time.
Therefore, Breadth instead of examining subsets of the user’s goal
space to evaluate a certain action, it ends up considering (almost)
the whole goal space similarly to Best match. In general, the user
profile that Best Match considers reflects more strongly her/his
preference towards a subset of goal(s); thus it (almost) neglects
the rest of the goals in the user’s goal space the same way Breadth
does. Since the two algorithms show similar behavior, Breadth
is preferred since, as we will see in Subsection 6.2, Breadth is
significantly more efficient in terms of time.

Moreover, Focuscmp and Focuscl retrieve the same actions in
35.6% and 78% of the lists respectively. In these cases, there exist
goal implementations for which the user has performed most of
the actions (completeness) and at the same time these are the
implementations with the less remaining actions. Furthermore,
Focuscl and Focuscmp show an overlapping of over 40% and 70%
(for the respective datasets) with Breadth and Best Match. This
is justified by the fact that the Focus mechanisms after popping
out all the actions of the goal implementation on which they have
selected to focus, they move on to another goal implementation.
Therefore, they select actions from different goal implementations
as Breadth and Best Match do. Another way to see this is that the
latter two algorithms select actions that serve more than one goals
at the same time; but that means that the selected actions serve
each single goal on its own as well.

Another observation is that the overlapping in the lists for the
43T dataset is larger than in the lists for the food market dataset
in all the cases because the action space of the users are wider in

Set Con- Num Of Dist- Num Of Imp-
nectivity inct Actions lementations

IS 1.2K 380 56K
I S2 7.6K 380 282K
I S3 15.6K 380 564K
I S4 50.3K 380 1.6M

I S5 8K 10K 120K
I S6 8K 100K 1.2M

I S7 8K 1M 12M

Table 7: Goal Implementation Sets.

Alg IS (56K IS2 (282K IS3 (564K IS4 (1.6M
Impls, Impls, Impls, Impls,
Conn Conn Conn Conn
1.2K) 7.6K) 15.6K) 50.3K)

Best Match 0.37 s 1.5s 3 s 9.7s
Focuscl 0.001s 0.053 0.096s 0.35s
Focuscmp 0.091s 0.42 0.86s 2.98s
Breadth 0.006s 0.089s 0.089s 0.34s

Table 8: Average Execution Time in implementation sets with
high connectivity.

Alg IS5 (10K IS6 (100K IS7 (1M Actions
Actions, Actions, Actions,

120K Impls 1.2 Impls 12M Impls
Best Match 0.713s 3.37s 5.38s
Focuscl 0.0017 s 0.0026s 0.0034s
Focuscmp 0.0024s 0.0035s 0.0055s
Breadth 0.0029s 0.0052 s 0.008s

Table 9: Average Execution Time in implementation sets with
a large number of actions and implementations.

the latter dataset due to the high action connectivity. Considering
a larger set of candidate actions, the algorithms are not forced to
select the same actions due to lack of alternatives.

6.2 Scalability
We ran the 4 goal-based strategies (i.e., the 3 strategies plus the
extra option for Focus) on goal-based association models that
have been built based on 7 implementation sets of different char-
acteristics: (a) implementation set size, (b) action set size, and
(c) number of implementations in which an action participates on
average (connectivity). Table 7 illustrates the implementation sets.
In sets IS2, IS3 and IS4 the connectivity is stretched up to 50.3K in
a set of 1.2M implementations, while in IS5, IS6 and IS7 the size
of the action set and the number of implementations increases by
10 times (IS7 consists of 1M actions and 12M implementations).

Results. Figure 7 illustrates the average time per information
need (i.e., per user activity) in secs considering each of the differ-
ent implementation sets. We observe that the Best Match shows
the highest execution times in all the cases. The reason is that
in goal-based profiles the feature space is not fixed, and thus the
representation of the actions is formed on the fly. The rest of the
mechanisms show low recommendation time even in the extreme
cases of the sets IS4 and IS8 (connectivity: 50315, average par-
ticipation: 19M, and connectivity: 12110, average participation:
137M respectively). On the other hand, Focuscl shows the lowest
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Figure 7: Average recommendation time considering implementation and action sets of different characteristics.

execution time. The difference between Focuscl and Focuscmp
results from the two set operations that the mechanisms use, i.e.,
asymmetric difference and intersection respectively.

In conclusion, the goal-based mechanisms scale well even in
sets of millions actions and implementations. Moreover, the num-
ber of actions and implementations alone do not affect much the
execution time, it is the higher connectivity that results in higher
execution times.

7 CONCLUSION
Based on the theory that goals rationalize and by consequence
trigger user actions, we introduce a family of recommendation
approaches that recommend actions seeing them in respect with
a number of goals that the users may fulfill through different ac-
tion sets. We have presented 3 strategies, each one incorporating
goals into the scoring of actions in a different way. The action
selections of the goal-based mechanisms are not affected by their
domain-based similarity with the actions in the user’s activity, nor
by the activities of other users. However, they are affected by the
benefit of the actions to be recommended to the goals in the user’s
goal space. The strategies Breadth and Best Match focus on more
than one goal at a time. In fact, the latter considers all the goals
in the goal space independently from the examined action. On
the other hand, the Focus mechanisms focus on the fulfillment
of one goal at a time. Nevertheless, they all increase the average
goal completeness in the user’s goal space without retrieving ac-
tions that monopolize the goal implementations. Moreover, all the
mechanisms create different recommendation lists for different
inputs (i.e., user activities). As part of our future work, we have
been examining methodologies that enhance the goal-based mech-
anisms by considering the user preferences on certain domain-
specific characteristics, i.e., hybrid goal-based and content-based
approaches.
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